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Abstract

We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed

states, are structural properties for diffusion processes. Through Nelson stochastic quanti-

zation we derive the stochastic image of the quantum mechanical coherent and squeezed

states.

1 Introduction

It is well known that the theory of stochastic processes is a powerful tool in the study of the

interplay between probabilistic and deterministic evolution [1]. In quantum mechanics, and in

particular in quantum optics, such interplay is expressed by the states of minimum uncertainty,

the coherent [2] and squeezed states [3l, which are viewed as the "most classical" states.

In this paper we report on a recent derivation [4] of uncertainty relations for classical stochas-

tic processes of the diffusion type, and we determine the diffusion processes of minimum uncer-

tainty (MUDPs). We find that a special class among them is associated to Gaussian probability

distributions with time-conserved covariance and mean value with classical time evolution: we

refer to them as strictly coherent MUDPs. We will also identify Gaussian MUDPs with time-

dependent covariance and conserved expectation value: we refer to them as broadly coherent

MUDPs. By exploiting Nelson's stochastic quantization scheme [5], we will show that the

strictly coherent MUDPs provide the stochastic image of the standard quantum mechanical

coherent and squeezed coherent states, while the broadly coherent MUDPs are associated with

the phenomenon of time-dependent squeezing.

Our study is motivated by the possibility that the formalism of stochastic processes offers to

treat on the same footing, in a unified mathematical language, the interplay between fluctuations

of different nature, for instance quantum and thermal [6].

Beyond the case of diffusion processes, it is interesting to note that coherence and squeezing

have recently emerged in other contexts wider than quantum mechanics ([7], [8]).
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2 Uncertainty and Coherence in Diffusion Processes

In what follows, without lack of generality, we will consider a one-dimensional random variable

q. The associated diffusion process q(t) obeys

dq(t) = v(+)(q(t),t)dt + tfl/2(q(t),t)dw(t) , dt > 0, (1)

where v(+)(q(t),t), is the forward drift, t/(q(t),t) is the diffusion coefficient, and dw(t) is a

Gaussian white noise, superimposed on the otherwise deterministic evolution, with expectation

E(dw(t)) = 0 and covariance E(dw2(t)) = 2dt. The forward and the backward drifts v(+)(x,t)

and v(_)(x,t) are defined as

txt--.0+ At '

(2)

vc_)(x,t) - lira E(q(t)-q(t-At) )at-_0+ _-_ I q(t) = x .

The definitions of v(+) and v(_) are not independent, but related by [5]

v(_)(x,t) = v(+)(x,t) - 20z(t,(x,t)p(x,t)) (3)

It is now convenient to define the osmotic velocity u(z, t) and the current velocity v(x, t)

u(x,t) = v(+)(x,t) - v(_)(x,t) = 8z(t/(x,t)o(x,t))
z '

(4)

v(x,t) = v(+)(x,t) + v(_)(x,t)
2

From the former definitions it is clear that uCx, t) "measures" the non-differentiability of the

random trajectories, controlling the degree of stochasticity. In the deterministic limit u vanishes,

and v(z,t) goes to the classical velocity v(t).

Finally, we have the continuity equation

Otp(x,t) = -O,(p(x,t)v(x,t)) . (5)

It is straightforward to check that E(v(+)) = E(v(_)) = E(v), and E(u) = 0. Further,

d

E(v) = _E(q) Vt. (6)

For the product qu, we have IE(qu(q,t))] = E(_,(q,t)). By Schwartz's inequality, the r.m.s.

deviations Aq and Au satisfy

AqAu >_ E(m(q,t)). (7)
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Inequality (7) is the uncertainty relation for any diffusion process. Equality in (7) defines

the MUDPs. Saturation of Schwartz's inequality yields u(x,t) = C(t)(x - E(q)), where C(t) is

an arbitrary function of time. Considering constant t, and time-dependent v, in both cases we

obtain a Gaussian minimum uncertainty density:

p(x,t) -- I exp

V/2_r(Aq) 2

(x-ECq)) 2:

2(Aq)2
, (8)

where 2(Aq) 2 -- -_(t)/C(t).

From eq. (5) we can determine the current velocity:

_E(q) + -_q -_Aq F(x,t),
(o)

where

[:r, 2 - 2xE(q)
FCx, t) = x- E(q) + ECq)exp [ _-_

Eqs. (8)-(10) lead to the stochastic differential equation obeyed by any MUDP:

(10)

dq(t) = [A(t) + B(t)q(t)]dt + t/1/2(t)dw(t). (11)

It is interesting to observe that (11) defines the so-called linear processes in narrow sense.

When A(t) = 0 they are the time-dependent Ornstein-Uhlenbeck processes. These last ones

play a natural role in the theory of low noise systems [1], which are thus found to be related

with MUDPs.

The possible choices of E(q) and Aq in (8) are not independent: taking the expectation

value of in (9)-(10), and reminding (6) one has that either

Aq = const. Vt, (12)
W(q) = j(t),

or

= (13)
E(q) =0 Vt,

where j(t) and k(t) are arbitrary functions of time, and we have chosen for simplicity q(t =

0) = 0. Consider first case (12): Aq does not spread; also, it is immediate to verify that the

expectation value of the process E(q) follows a classical trajectory:

d

v(x,t) = -_ECq) = v(t), (14)

As a consequence, MUDPs of the form (8) obeying (12) and (14) are coherent in a sense

precisely analogous to that of quantum mechanical coherent states: we will refer to them as

strictly coherent MUDPs and to processes (8) obeying (13) as broadly coherent MUDPs.
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It is possible to discriminate on physical grounds the strictlycoherent MUDPs from the

broadly coherent ones by observing that (12) and (14) come as immediate consequence on

imposing the Ehrenfest condition

d

v(E(q), t)= -_E(q) , (15)

so that the strictlycoherent MUDPs can be viewed as the most deterministic semi-classical

processes.

Consider the scaletransformation x _ e-'x which authomatically impliesu _ e'u,where 8 is

the scale parameter. The Gaussian distribution(8) isform-invariant under thistransformation,

while the uncertainty product (7) isstrictlyinvariantwith Aq ---,e-'Aq and Au _ e'Au. We

willshow next that in the framework of Nelson stochastic quantization this transformation is

just the squeezing transformation of quantum mechanics. In this context, broadly coherent

MUDPs are of special interestwhen considering time-dependent squeezing.

3 Nelson Diffusions

A very important class of diffusion processes (Nelson diffusions) in physics has been introduced

by Nelson in his stochastic formulation of quantum mechanics [5].

To'each single-particle quantum state • = exp [R % _S], Nelson stochastic quantization

associates the diffusion process q(t) with

h 1 as(x,t)
= 2-_' p(_,t) = I_(_,t)i _, v(x,t) -- rn cgx ' (16)

where m is the mass of the particle. At the dynamical level, the Schroedinger equation with

potential V(x, t) is equivalent to the Hamilton-Jacobi-Madelung equation

(a.s(_,t)): as a:.p,/:(_,t) -v(_,t). (17)
o,s(.,t) + 2., - 2m p,/,(.,t) =

It is well known [9] that for Nelson diffusions the uncertainties Aq and Au are related to the

quantum mechanical uncertainties A@ and A_ of the position and momentum operators _ and

by

z_0= _q, CA_)_= -:[(_u)_+ (z_v)_],

(18)

(zX@)2(Aib): > (Aq)2(ZXrnu) 2 > --.
_ 4

Minimum uncertainty Nelson diffusions (MUNDs) are MUDPs. Correspondingly, we will

speak of strictly and broadly coherent MUNDs. By solving (17) for MUNDs we obtain V(x,t)

and the classical equations of motion for E(q). For strictly coherent MUNDs (12) we have
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= + f(t) + Vo(t)
2

tO 2 ___-

d 2

-d-_E(q) + c#2E2(q) = f(t) .

When the arbitrary constants f(t) and Vo(t) vanish, eqs.

_2

4m2(Aq) 4

(19)

(19) are those of the classical

harmonic oscillator and the associated quantum states are the standard Glauber coherent states;

when fit) =const. we have the Klauder-Sudarshan displaced oscillator coherent states; finally,

when f(t) is truly time-dependent, we obtain the Klauder-Sudarshan driven oscillator coherent

states [10].

For broadly coherent MUNDs we have instead

V(x,t) = mco2(t)z 2 + Vo(t), co'(t) = 0(t) + 292(t) 8m_(Aq)(, (20)

where a(t) = (Aq)-XdAq/dt must be such that co2(t) is positive. Eq. (20) describes the para-

metric oscillator potential, associated to the feature of time-dependent squeezing.

Furthermore, we can identify among MUNDs those corresponding either to Heisenberg or to

Schroedinger minimum uncertainty. The key relation, easy to prove, is

E(vq)- E(v)E(q) = < {0, P} >_ __ ib- < ib>_
2 ; (_ = < _ >¢' /b-- m , (21)

where < {.,-} >¢ denotes the expectation of the anti-commutator in the state _, i.e. the

Schroedinger part of the quantum mechanical uncertainty.

Eqs. (18) and (21) show that the strictlycoherent MUNDs (19) exhaust the Heisenberg

minimum uncertainty states,while the broadly coherent MUNDs (20) form a subset of the

Schroedinger minimum uncertainty states.

Finally,we investigatethe possibilityof letting_,be time-dependent in the context of quan-

tum mechanics. From the firstof equations (16) thismeans lettingeither m or h be functions

of time.

This lattercase seems a bit speculative at thisstage. We thus fixour attention on the case

of time-dependent mass re(t) and constant h.

For such systems itcan be immediately verifiedthat the Nelson scheme (16)-(17)stillholds

with m(t) replacing m. Considering the most interestingcase of strictlycoherent MUNDs,

which means choosing C(t) ocv(t),and solving (17) we obtain

V(ac,t) - lr_(t)co2(t)x2 + f(t)x + Vo(t),

d2 en(t) d w2
-_E(q) + m(t) _tE(q) + (t)E(q)

_t 2

4rnz(t) (Ax) ''

_ f(t)

tact)'

(22)
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where f(t), Vo(t) are arbitrary functions of time. Eqs. (22) supplemented with rn(t) = rn0e r(`)

define the dynamics of the damped parametric oscillator. The stochastic approach thus sheds

new light in a unified treatment on the study of quantum dissipative oscillators, for it allows to

derive for the expectation value the dynamical equation (22) that was so far unknown.

In conclusion, we have shown that the quantum mechanical concepts of uncertainty, coher-

ence, and squeezing can be imported in the probabilistic arena of diffusion processes. This

appears to be possible because of a subtle interplay between fluctuations, control, and optimiza-

tion. Conversely, we may also say that these features of quantum mechanics cart be traced back

and related to general properties of diffusion processes.

Work on this subject is in progress, and includes application of our scheme to polymer

dynamics and chemical reactions, uncertainty relations in field theory and dynamical systems

on lattices and manifolds.
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SECTION 6

FIELD THEORY AND GENERAL INTEREST
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